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Irreducible representations of the Poincar6 
parasuperalgebrat 

A G Nikitin and V V Tretynyk 
Institute of Mathematics, Ukrainian Academy of Scienw, Tereshenkivsh str.3. K i e v 4  Ukraine 

Received 10 June 1994 

Abstract. We explicitly describe all the irreducible unitary representarions of the P o i n c d  
pnnsuperalgebn, i.e. the parasupersymmetric extension of the Lie algebra of the PoinoVe group. 
This pwuperalgebm includes. as a particular ose, the usual P o i n d  superalgebra and can 
Serve as the group-thearetical foundation of pansupersymmetric quantum field theory. 

1. Introduction 

About 20 years ago there appeared a new symmetry principle in physics which supposed 
the existence of symmetry transformations mixing bosonic and fermionic states [1,2]. In 
addition to the usual Poincar.4 group generators the supplementary fermionic generators, 
which connect fields with different statistics, were taken into consideration. Supersymmehy 
provides a mechanism for the cancellation of the ultraviolet divergences in quantum field 
theory. It also makes it  possible to unify spacetime symmetries (i.e. Poincart invariance) 
with internal symmetries [3] and opens additional ways for the search for unified field 
theories, including all the types of interactions [2]. 

Supersymmetric quantum field theory (SSQm) [4] induced the appearance of 
supersymmetric quantum mechanics (SSQM) [5]. While being very interesting in its own 
right as a relative simple mathematical model of a physical system with supersymmetry, 
s s Q M  stimulated a deeper understanding of ordinary quantum mechanics and provided new 
ways to solve some problems using, e.g., the concept of partner superpotential 161. 

s s Q M  in its turn has been generalized [7] to parasupersymmetric quantum mechanics 
(PSSQM). The latter deals with bosons and p = 2 parafermions having parastatistical 
properties 181. 

The independent version of PSSQM corresponding to positive defined Hamiltonians was 
proposed in [9], the theories intermediate between SSQM and PSSQM have been discussed in 
l101. 

A more recent theory called PSSQM has awoken interest and stimulated the appearance 
of a lot of articles, see [11] and references therein. Parasuperpotentials admitting Lie and 
non-Lie 1121 symmetries were investigated in [13], hidden SU(3)  symmetry of equations 
of PSSQM was established in [14]. 

The decisive step in the development of PSSQM was made by Beckers and Debergh 
[I51 who asked for Poincart invariance of the theory and formulated the grouptheoretical 
foundations of so-called parasupersymmetric quantum field theory (PSSQFr). This theory is 

t This work was supported by the Ukrainian DKNT foundation for fundamental research. 
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a natural generalization of SSQFT, dealing with parastatistics instead of the usual Fermi or 
Bose statistics and with the Poincark parasupergroup (or Poincard parasuperalgebra (PPSA)) 
instead of the Poincar6 supcrgroup (or Poincarb superalgebra (PSA)). On the other hand, 
this theory is a relativistic extension of the PSSQM, preserving the main properties of the 
non-relativistic parasupercharges. 

Moreover, some dynamical models were proposed in 1151, which were parasupersym- 
metric analogues of the Wess-Zumino model [16]. 

We found it is necessary to analyse irreducible representations (IRs) of the PPSA for the 
following reasons: 

(i) this is a way to establish the group-theoretical fundamentals of the PSSQFT; 
(ii) it enables a new view to be generated-note the PSA which appears in our approach 

as a particular realization of the PPSA; 
(iii) it indicates the specific role of the groups SO(3) .  SO(5) and S O ( 2 , 3 )  in the 

construction of internal super- and parasupersymmetries; 
(iv) finally, the description of these IRs is an interesting mathematical problem admitting 

an exact and elegant solution. 
Using the Wigner induced representation method we find all the IRs of the PPSA. for 

time-like, light-like and space-like four-momenta. We also find covariant representations of 
the PPSA, which can have direct applications in PSSQFT. 

A G Nikitin and V V Tretynyk 

2. The Paincar6 parasuperalgebra 

The Poincark parasuperalgebra [I51 includes ten generators Pv, J,, of the Poincard group, 
satisfying the usual commutation relations 

[P,, P”1 = 0 

[J,.. Jpol = i(s,J, +svpJps - sirpJvn - g v J , p )  

[P,, Jvnl = i(g,d’, - g,,PJ 
(2.1) 

p ,  v = 0, 1,2,3 

and four parasupercharges QA, QA ( A  = I ,  2 )  which satisfy the following double 
commutation relations 

.Ipv = -Jug 

[QA,  [ Q B ,  Qcll = [OA,  [ O B ,  &I1 = 0 

[ Q A ,  [QE.  &I]= -4QdUg)acP” (2.2) 

[ O A g  [QB, QCll =4QC(up)BAP”. 
Here U, are the Pauli matrices, ( , )Ac are the corresponding matrix elements. 

spinors: 
Furthermore, parasupercharges commute with generators of the Poincar6 group as Weyl 

where U”,, = -uOu = uvuo. 
The PPSA is a direct (and natural) generalization of the PSA [ Z ] .  Indeed, the PSA also 

includes 14 elements satisfying (2.1) and (2.3). but instead of (2.2) supercharges Q A ,  Q A  
satisfy the following anticommutation relations: 

(2.4) 
IQA,  Qsl+ = Q A Q E +  Q B Q A  = O  [OA-  Sslc = O  
[QA.  O S ] +  = 2(u&,)ABP’. 



Irreducible representations of the Poincar.! parasuperalgebra 1657 

We can ensure that (2.2) is a mere consequence of (2.4); however, the converse is not 
true. Thus, the PSA is a particular case of the more general algebraic structure called PPSA; 
in the same way that the usual Fermi statistics i s  a particular case of the parastatistics [8].  
Moreover, by analogy with the PSA, Pc and Jnh are called even, but Q A ,  are called 
odd elements of the PPSA. 

Some representations of the PPSA were described in [15]. Here we present the complete 
description of all the IRS of the parasuperalgebra (2.1H2.3).  

3. Casimir operators and classification of the IRs 

To find the main Casimir overators of the PPSA it is convenient to introduce the following 
4-vector [5] 

B, = W, + X ,  
where W, is the Lubanski-Pauli vector 

W, = $ E ~ ~ ~ ~  J w p o  

and X ,  are the following bilinear combinations of parasupercharges 

Xo = ~ K Q I ,  QII  + [Qz. Q z I I  
XZ = ;I[&, Q i l + [ Q * ,  Q i l l  

IB,, puI = 0 

[B,, Q A ]  = ~ P ’ Q A  
[B,, B,] = isw,,PpB“ 

XI = ~ N Q I .  Qz1 + [Qz, Q i l t  

X3 = iK&. Q i l  + [Qz, &11. 
Using (2.1)-(2.3) we find the following commutation relations 

[B,, Ju,l = Kg,& - g,,Bd 

[Bp, Q A ]  = - 4 P w Q ~ ,  

from which it follows that the operators 
CI = P, P’ C ~ = P , P ’ B , B Y - ( B , P ” ) Z  

(3.1) 

(3.2) 

(3.3) 

(3.4a) 

(3.4b) 

(3.5) 
are the Casimir operators of the PPSA. Indeed, C, coincides with the usual Casimir operator 
of the Poincark algebra commuting with Q A ,  Q A  in accordance with (2.3). The second 
Casimir CZ i s  essentially new and includes the Poincar6 invariant operator WvW” as a 
constituent part. Thus, an 1R of the PPSA is, in general, reducible with respect to the Lie 
algebra of the Poincar.4 group. 

We will search for representations of the algebra (2.1>-(2.3) i n  the momentum 
representations, thus the action of the displacement operators P, will reduce to multiplication 
by p u ,  -CO e p v  < M. In this case, for any fixed p u .  relations (2.2) and (3.4b) define 
the algebra of operators B,, Q A  and Q A  which is going to be the main object of our 
investigations. 

As in the case of the ordinary Poincar6 algebra [17,191 we distinguish the three main 
classes of IRs corresponding the following values of CI: 

(1) P’P’ = M Z  > 0 (3.6a) 
(11) P’P’ = 0 (3.6b) 
(III) P’P” = -72 < 0. ( 3 . 6 ~ )  

We will see that the IRs of the PPSA can be qualitatively distinguished for different values 
of CI as enumerated in (3.6a-c). Moreover, these classes can be subdivided in accordance 
with the different origins of eigenvalues of the second Casimir CZ and of additional Casimir 
operators existing in particular classes 1-111 of IRS. 
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4. IRS of class I 

A G Nikifin and V V Treqnyk 

If (3.60) is valid then there exists the additional Casimir operator C3 = PO/lPol the 
eigenvalues of which are E = f 1. We reswict ourselves to considering IRS corresponding 
to E = +1 (for the case E = -1 refer to section 8). In this case we can define ‘a Wigner 
little parasuperalgebra’ (LPSA) associated with the time-like 4-vector P = (M, 0, 0,O). We 
set 

Bk=~V~VkXk=-MSk+XkEMjk k = 1 , 2 , 3  (4.1) 

[Bo. Q A ]  = ~ M Q A  [Bo, QAI = -;M& (4.2) 
[jk, QA] = [jk, a A 1  = o  (4.3) 
[jk. jjl = iekjij. (4.4) 

[QA, [QA, Qs l l=4MQs  [QA, [QA, QEII = 4 M a ~  (4.5) 

and obtain from (3.4b) 

On the other hand we obtain from (2.2) 

the other double commutators of QA and & are equal to zero. 
It follows from (4.5) that the relation (4.2) turns out to be an identity if (4.5) is satisfied. 
In accordance with (4.3x4.5) the LPSA reduces to the direct sum of the Lie algebra the 

basis elements of which are ju and the algebra of operators QA, & characterized by the 
double commutation relations (4.5). Thus, to describe the IRs of this LPSA it is sufficient to 
find all the IRS of the subalgebras (4.4) and (4.5). Indeed, let ja and 21 be the basis elements 
of an IR of the algebra (4.4) and the unit operator in the space of this IR and QL, QA and 
IQ are basis elements of an IR of the algebra (4.5) and the unit operator in the space of this 
IR. Then, setting 

ja = Ja @IQ QA = Ij @ QL QA = Ij @ Q A  (4.6) 
(where @ denotes the direct (Kronecker) product) we come to the IR of the algebra (4.3)- 
(4.5). Moreover, such a correspondence is a homomorphism. 

Relations (4.4) define the Lie algebra AO(3)  of the rotation group O(3). IRS of this 
algebra are labelled by integers or half integers j so that 

J’: + j: + 2 = j(j + 1) 

(j3)ub =S,,(j+ I - a )  

( ~ l i . i ~ ) u b = 6 u h * t J j ( j + l ) - ( j - ~ t  1 ) ~ - a + 1 & 1 ) .  

el = &(&I + iSs2) GI = - i ~ s z )  

Q~ = & ( s ~ ~  + is,) = &(s53 - i ~ 5 4 )  

(4.7) 
The corresponding basis elements 
which can be chosen in the following form 1181: 

are the square matrices of dimension (2 j+ I )  x (2j+ 1)  

a . b =  1.2, ..., 2 j +  1 
(4.8) 

To find IRs of the algebra (4.5) we choose the new basis 

(4.9) 

and use the following notations for commutators 

l e i ,  a i l =  4MS12 [Qz. Q z I =  4MS34 - 
[QI.  Qd = 2MWz4 - is31 + Si4 - s d  
[Qz, Qll = 2M(iS31 - SB + SI4 - iS2.d 
[Qt, Qzl = -2M(iS31 + is24 + SM + s24) 

[QI, Q21 = ZM(-iS,t - iSx + S14 + &3). 

(4.10) 
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Formulae (4.9) and (4.10) are invertible, so that 

(4.11) 

Using (4.5) and (4.1 1) we immediately find the following commutation relations for 

(4.12) 
which characterize the Lie algebra AU(5)  of the rotation group in five-dimensional space. 

IRS of the algebra AU(5)  are labelled by pairs of numbers ( n l ,  nz) both integer or half 
integer, moreover ni > n2 [181. The corresponding basis elements are square matrices of 
dimension N(n1,  nz), where 

~ ( n i ,  nz) = ;(ni - nz + I)(nl+ nz + ~ ) ( ~ n l +  3)(2nz + I). (4.13) 

Thus we have proved that for PUP" > 0 the LPSA reduces to the direct sum of the 

L P S A  = A O ( 3 ) 8 A O ( 5 )  (4.14) 
It follows from the latter that IRs of the PPSA of class I with positive sign of energy are 

labelled by the sets of numbers (M, j ,  nl, nz). To find the explicit form of the corresponding 
basis elements of the PPSA we start with the exact form of the Lubanski-Pauli vector W; in  
the frame of reference where P = (M, 0, O,O), which, in accordance with (3.2), (4.1) and 
(4.10), can be given by the following relations: 

(4.15) 

Ski = -&, k, 1 = 1,2,  . . . 5  

[ski, smnl = i(&mSfn + &nskm - s k n s l m  - 8 f m S k n )  

For the explicit form of these matrices see the appendix. 

algebras AO(3) and AO(5) 

w; = 0 w: = -M(ju + $&dhcshc f i&) G -M$. 
Here 

- 
j, = j,  IN(^,,^^) ski = h j + l  8 j k f  (4.16) 

and &r are basis elements of the IRs D ( j )  and D(nl ,n2)  of the algebras AO(3) 
and A 0 ( 5 ) ,  correspondingly.  IN(^,.^^) and I?,+] are the unit matrices of dimensions 
N ( n t , n z ) x N ( n 1 , n z ) a n d ( 2 j + l ) x ( 2 j + I f .  

The corresponding parasupercharges are present in (4.9). With the help of Lorentz 
transformation we find the explicit form of the Lubanski-Pauli vector and parasupercharges 
in an arbitrary frame of reference: 

(4.17) 



(4.18) 

Q A  = Q: 
where 

E = d m  pz = p: + p i  + p:. 
The explicit form of the generators of the Poincark group, corresponding to the 

Lubanski-Pauli vector (4.17), is well known (see, e.g.. [19]), and can be represented by the 
formulae 

(4.19) 

Thus, we have enumerated all the non-equivalent IRS of the PPSA of class I and have 
found the explicit form of the corresponding basis elements. see (4.15), (4.18) and (4.19). 

5. LRS of class I1 

In this case we again have the additional Casimir C3 = Po/lPol = E = A l .  As before we 
consider the case E = + I ,  refer to section 8 for the other case. 

To obtain the corresponding LPSA we choose the light-like 4-vector P = (M, 0.0, M). 
The corresponding algebra (2.2) reduces to the form 

[Qz, [Qz. Qz11= 8MQ2 [Qz. [Qz, Qzll= 8M& (5.1) 
[Qz. [Qz. Q i l l =  ~ M Q I  r a z ,  [Qz, Qil l=8MQ1 (5.2) 

the remaining double commutators equal to zero. 
Let us start with (5.1). Denoting 

we find that j ,  have to satisfy the relations (4.4). characterizing the algebra AO(3).  The 
relations (5.3) are invertible, thus the algebra (5.1) reduces to the algebra AO(3) .  Then the 
relations (5.2) (completed by the zero double commutators) have only aivial solutions for 
QI and 01. SO we come to the following general form of parasupercharges: 

Q, = Ql =_ o (5.4) QZ = 2J;i?(j1 - i j z )  Qz = 2 f i ~ j I  + ijz) 
where j,, ate basis elements of the algebra AO(3).  

In accordance with (3.4b), (5.4) and (4.4) we obtain 

(5.5) 
[Bo, P!1= 4MQi [Bo, Q t l =  -$MQI B3 = Bo 
[BO, B I ]  = iMB2 [Bo. B2] = -iMBI [BO. B I ]  =O. 

Defining 

BO = WO + XO = WO + Mjs = M(T0 - f ( j  - j3)) 

WO = M(To - i ( j  + j,)) (5.6) B1 = W I  = TI BZ = W, s Tz 



Irreducible representations of the Poincare' parasuperalgebra 1661 

we obtain from (5.5) 

[To, T I ]  = iTz [To, Tzl = - iz  [Z.TZl=O (5.7) 
[To. & I =  [ T I .  j,l = ITz, j , l= 0. (5.8) 

We see that LPSA reduces to the direct sum of the algebras AO(3) and AE(2),  
characterized by relations (4.4) and (5.7) correspondingly. In other words 

L P S A  = A E ( 2 )  63 AO(3). (5.9) 
The IRs of the algebra AE(2)  are of two kinds corresponding to zero and non-zero 

G = T z = O . T o = h  (5.10) 
eigenvalues of the Casimir C = T/ + T?. If C = T/ + T; = 0 then 

where h is an arbitrary (fixed) integer or half integer. If 
C = T ~ + T ~ = r 2 > 0  

the corresponding IRS are realized by infinite-dimensional matrices. 
eigenvector of the commuting operators C and TO, then 

Let Ir,n) be the 

(5.11) 

(5.12) 

Thus IRs of the algebra (4.4), (5.7) and (5.8) are labelled by pairs of numbers (j ,  r )  (or 
( j ,  A) if r = 0). Denoting the common eigenvector of the commuting matrices j 2 ,  j3, C, TO 
by I j ,  v ;  r, n) and using (4.8). (5.11) and (5.12) we can represent basis element$ of IRS of 
this algebra in the form 

2 C I r , n )  = r I r , n )  
(TI f iT2) I r, n )  = r I r, n f 1). 

To I r, n)  = n I r,n) 

j 3 l  j , v ; r , n ) = v l j , v ; r , n )  v = j , j - I  ,... - j  

( j l i i j 2 ) I  j , v ; r , n ) = J j ( j + l ) - u ( u ~ : ) ~  j , v f ~ ; r , n )  
To I j, v ;  r ,  n) = n I j ,  U ;  r, n )  

(TI f iT2) j j ,  U ;  r, n)  = r 1 j ,  U ;  r, n i 1) 

I n = h. r = 0 .  

(5.13) 

n = o . & ~ , * z  ,_ . .  or n = f f . h i , i i  , . . _ ,  r # O  

Thus, we have found the explicit form of the IRs of the operators W,, QA.  Q A  in 
the reference frame P = (M, 0, 0, M). To find these operators (and the corresponding 
generators P,, .Ivn) in an arbitrary frame of reference it is sufficient to make the 
corresponding rotation transformation. As a result we obtain 
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For the case which is important for physics C = r z  = 0 (representations with discrete 
spin) formulae (5.15) are simplified and reduced to the form 

Po = &p Po = p a  

(5.16) 

where A and j are arbitrary integers or half integers. 
So IRs of the PPSA, belonging to class II with Po 5 0, are labelled by the sets of numbers 

( r ,  j ) ,  r # 0 or (A, j )  for r = 0. The explicit form of the corresponding basis elements is 
given in (5.14)-(5.16) and (5.13). 

6. IRs of class In 

To obtain the corresponding LPSA we choose the space-like 4-vector P = (0, 0, 0, q). The 
corresponding double commutation relations (2.2) reduce to the form 

~ Q I ,  [QI .  Qal l=  -4tlQs 

[Q2, [Q?, e811 =411Qa 
roi3 lei. ~ s l l =  -4& 

(6.1) I&. [Qz, os11 =4VQs 

the remaining double commutators are equal to zero. Moreover, denoting 

Bo = - J ~ ~ V  + xo = dll. B] = -.iOzv t x1 = +iol g2 = ~ ~ ~ q +  xz & 
(6.2) 

and remembering that B3 = X3, we find from (3.46), that 

&, Q A ]  = [ j m f l ,  Q A l  = o  % f i  =0,1 ,2  (6.3) 

(6.4) j,,i = ik.,jflp t gspjuo - gJ6, - g a o j U p )  

where 

gm = -811 = -gu = 1 8.4 = o  a#B.  

In accordance with (6.1F(6.4) the LPSA corresponding lo space-like momenta reduces to 
the direct sum of the algebra A 0 ( 1 , 2 )  (defined by relations (6.4)) and the algebra, defined 
by the double commutation relations (6.1). The latter reduces to the algebra A0(2,3) ,  if 
we define QA, Q A  and the corresponding commutators using the relations (4.9) and (4.10) 
(with M + q. compare ( 3 . 6 ~ )  and (3 .6~)) .  Indeed, in this case we immediately find that 
Ski have to satisfy the algebra A0(2,3) .  The corresponding commutation relations can be 
obtained from (4.12) by the change 6x1 + -&I, where 

gii = g n  = -833 = -g* = -85s = 1 gu=O k f l .  (6.5) 

Thus we make sure that the LPSA for representations of class 111 reduces to the direct 

L P S A  = A 0 ( 1 , 2 )  eAO(2 .3 )  (6.6) 

The IRs of the algebra (6.6) can be constructed by analogy with (4.16). For IRS of the 

sum of the algebras AO(1,Z) and AU(2,3) : 

algebras AO(1,Z) and A0(2,3)  see, e.g., 1201. 
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Starting with (6.2), (4.9) and (3.1) and making the Lorentz transformation corresponding 
to a transition to an arbitrary frame of reference, we find the corresponding basis elements 
of the PPSA in the form 

= Pp Juh = X a P h  - XhPu + Sub 

Jou = X O P ~  - ~ [ X U ,  pol+ + &a 

- 1 
[(PI - ~PZ)(%I  - i&d + (v + p3 + PO)(S53 - iSd l  Qz=m 

where 

Pi = P' - 02 SI2 = x z  + $12 + S43) 

'%I = + + s42) 302 = i o 2  + i(S32 f s41) 

j ag  are basis elements of the algebra A0(1,2) (6.4), Sit are basis elements of the algebra 
A 0 ( 2 , 3 )  with the metric tensor (6.5), besides [ y e p ,  Skf] = 0. 

7. Covariant representations 

Here we present a special realization of representations of the PPSA when the Poincart group 
generators have the form 

pw = ~p Jfiv x p p v  - x v p f i  + s p v  (7.1) 
with S,, being numerical matrices. Such a realization (when the 'spin part' S,, of generators 
commutes with 'orbital part' x,p, - x,p,) can be more revealing in physics than the 
realizations considered so far. 

We choose S,, in the form 

Suh = &ob& Sh = -is. (7.2) 
where Sa are the matrices defined in (4.15). Then the corresponding parasupercharges are 

Q, = JZT( -S~~  + is521 = -.~Z(S,~ - i~5.4) 

(7.3) 
2 

02 = /,[(Po + p 3 ~ ~ 5 3  + is54) + (pi - ipz)(s5[ + issz)~. 

To obtain the realizations (7.lH7.3) it is sufficient to use the transformation (7.4) and 
(7.5) given in the following. Moreover, it is easy to verify that the operators (7.1)-(7.3) 
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satisfy the relations (2.1)-(2.3), i.e. realize a representation of this algebra. Besides, if we 
assume PJ’” = M Z  > 0, po = (p2 + M2)’I2,  and the matrices Sv,, j ,  of (4.15), (7.2) 
and (7.3) have the form (4.16), then this representation is irreducible and belongs to class I. 
Indeed, the corresponding operators (7.1)47.3) reduce to the form (4.18) and (4.19) using 
the transformation 

P,, 4 UP,,U-’ 

A G Nikitin and V V Trelynjk 

J,” + U J,,.U-] 
(7.4) 

Q A  4 U Q A U - ]  Q A  + UQAU-’  
where 

E (7.5) 

8. Discussion 

Considering IRs of the PPSA we restricted ourselves to the case of positive values of the 
Casimir operator C3 = Po/lPol. The case of negative energies can be analysed in complete 
analogy with the above but corresponds to another LPSA in comparison with (4.14) and 
(5.9). Moreover, in this case we have L P S A  = AO(3)  B A 0 ( 1 , 4 )  for IRS of class I 
and L P S A  = AE(2)  CB A 0 ( 1 , 2 )  for of class II. The corresponding parsupercharges 
can be obtained from (4.18) and (5.14) by the changes Sg. + iS5,, j ,  + i ja,  U = 
1 .2 .3 .4 ,  01 = 1,2, where S,, and j, are now basis elements of the algebras A0(1,4)  
and A0(1,2) correspondingly. They satisfy the relations (4.12) with &b + -gab, where 
gll =g22 = g33 = gM = -g5* = -1 and glt =gu = -gs3 = -1. 

Thus, we have described all possible (up to equivalence) IRs of the PPSA. Here we 
discuss possible physical interpretations of them. 

We start with IRS of class I. First, let us discuss the spin contenls of these representations. 
To do this we reduce them to representations of the Poincark algebra A P ( 1 , 3 )  (which is a 
subalgebra of the PPSA). 

Let us restrict ourselves to the case j = 0 (refer to (4.15) and (4.7)). Calculating the 
corresponding Casimit operator C = W,W” for the subalgebra A P ( I ,  3 )  we obtain from 
(4.17) and (4.15) 

W,,W’Z = M * S  s = (SI, S,, S,) (8.1) 

S” = f ( f E a h e S h e  + S d  

where 

(8.2) 
and Sohr S, belong to the IR D(n1, n l )  of the algebra AO(5).  

The matrices (8.2) realize a reducible representation of the algebra AO(3). Indeed, 
reducing the I R  D(nl ,n2)  to the representations of the algebra AO(4)  3 &b,S&,(u. b = 
1 ,2 ,3 ) ,  and continuing this reduction to AO(3)  3 S, of (8.2), we obtaint the following set 
of eigenvahes for (8.1) 

Moreover, the multiplicity of any value of s (i.e., the degeneration of the 
corresponding eigenvalue M%(s + 1) of W,W”) is given by the following formulae 

i For the details connected with IR~ of the algebrz AO(5) 3 AO(4) 3 AO(3) see. e.g., [IS]. 
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For the case j # 0 (see (4.7) and (4.15)) the possible spin values can be found as a 
result of summation of the two momenta, i.e., j and S of (8.2). As a result we have instead 
of (8.3) 

The corresponding multiplicities can be calculated using the Clebsh-Gordon theorem and 
bearing in mind (8.4). 

In accordance with the above IRs of the PPSA can be set into correspondence with 
parasupermultiplets of particles with spin described by formulae (8.4) and (8.5). 

Like supermultiplets [2], parasupermultiplets includes both bosons and fermions. 
Let us consider some examples of IRS. For n~ = ~2 = 112 we come to IRS of the 

Poincart superalgebra. Indeed, in this case the corresponding operators Q A  and QA of 
(4.18) satisfy the anticommutation relations (2.4), defining supercharges. Moreover, the 
related formulae (8.3)-(8.5) reduce to the well known relations (see, e.g., 121) 

Mj = 2 Mj*, = 1 (8.6) I s = j + 4, j ,  j - 3 

(the expressions for M, follow from (8.4) and the Clebsh-Gordan theorem), giving the spin 
contents of supermultiplets. 

Thus, we have obtained IRs of PSA as a particular (and the simplest) case of our more 
general problem. 

For n ,  = nz = p / 2 ,  p = 1,2, ... formulae (7.1)-(7.3) present the realization of 
generators of the Poincar6 parasupergroup, which is equivalent to that found in [15]. The 
distinguishing feature of our approach is that we use the explicit matrix constructions (more 
precisely, IRs of the algebra AO(5)) instead of the paraGrassmanian variables and their 
derivatives applied in [15]. The last, of course, admit matxix realizations and vice versa, 
our results can be reformulated using the concept of parasuperfield [151. 

Consider IRs of class I1 with discrete spins. The corresponding basis elements are 
presented in (5.14) and (5.16). 

The considered representations are reducible with respect to the subalgebra AP(l ,3) .  
Indeed, calculating the additional Casimir operator of the AP(1,3): 

C =  Jizp3 + 531 P Z  + J23p1 = - f j - f j ,  
P 

we find that its eigenvalues x (associated with helicities of particles) are 

~ = A . A - ~ , A - I  , .__ .  A -  j. (8.7) 
Thus, the corresponding parasupermultiplet includes 2 j  + 1 particles, both bosons and 
fermions, the helicities of which are given in (8.7). 

For j = 112 we again come to the IRs of PSA which is a particular case of a more 
general object, i.e., the Poincare parasuperalgebra. 

Using the transformations found in [21] it  is possible to find realizations of IRs of the 
PPSA which are uniform for any class 1-111 of ( 3 . 6 ~ ) .  Such realizations are unitary equivalent 
to those already considered. 
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Appendix 

The orthogonal group O(5) i s  the set of all linear transformations of the five-dimensional 
Euclidean space preserving the quadratic form x :  + x i  + . . . + x:. The Lie algebra of this 
group is characterized by relations (4.12). Irreducible representation of the algebra AO(5) 
are labelled by pairs of numbers nl and n2 (simultaneously integer or half integer). 

Each representation of the algebra AO(5)  generates a representation of the algebra 
AO(4). In the Gel'fand-Zetlin basis [IS] all the Casimir operators of the subalgebras 
AO(4) 3 AO(3) 3 AO(2) are diagonal and are characterized by :he eigenvalues m l ,  m2, 
where nl 2 ml 2 nz 2 mz 2 -n2;1, where ml 2 I > Imz(,m, where I 2 m 2 -1, 
correspondingly. 

A G Nikitin and V V Trepnyk 

Numerating basis elements by multi-index 

< (  mr)  
we can represent :he action of generators in the form (m l  and m2 are fixed) 

s2,t ( mr) = m t  ( mb:) 

+m + 1 ) ( I  -m + l ) (mt -1)(m1+1+2)(l -m2+ l)( l  +m2+ I) 
(21+ 1)(2l+3)(l+ 1)2 

s43< ( ,,,= ) = J 
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x t (  " I : - ' ) .  

Other generators can be obtain from (4.12). 
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