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Irreducible representations of the Poincaré
parasuperalgebraj

A G Nikitin and V V Tretynyk

Institute of Mathematics, Ukraintan Academy of Sciences, Tereshenkivska str.3, Kiev—4, Ukraine
Received 10 June 1994

Abstract. 'We explicitly describe all the imeducible unitary representations of the Poincaré
parasuperalgebra, i.e. the parasupersymmetric extension of the Lie algebra of the Poincaré group.
This parasuperalgebra includes, as a particular case, the usuat Poincaré superalgebra and can
serve as the group-theoretical foundation of parasupersymmetric quantum field theory.

1. Introduction

About 20 years ago there appeared a new symmetry principle in physics which supposed
the existence of symmetry transformations mixing bosonic and fermionic states [1,2]. In
addition to the usual Poincaré group generators the supplementary fermionic generators,
which connect fields with different statistics, were taken into consideration. Supersymmetry
provides a mechanism for the cancellation of the ultraviclet divergences in quantum field
theory. It also makes it possible to unify spacetime symmetries {i.e. Poincaré invariance)
with internal symmetries [3] and opens additional ways for the search for unified field
theories, including all the types of interactions [2].

Supersymmetric quantum field theory (SSQFT) [4] induced the appearance of
supersymmetric quantum mechanics (S5QM) [5]. While being very interesting in its own
right as a relative simple mathematical model of a physical system with supersymmetry,
55QM stimulated a deeper understanding of ordinary quantum mechanics and provided new
ways to solve some problems using, e.g., the concept of partner superpotential [6].

SSQM in its turn has been generalized [7] to parasupersymmeitric quantum mechanics
{PssQM). The latter deals with bosons and p = 2 parafermions having parastatistical
properties [8].

The independent version of PSSQM corresponding to positive defined Hamiltonians was
proposed in [9], the theories intermediate between SSQM and PSSQM have been discussed in
{10}

A more recent theory called PSSQM has awoken interest and stimulated the appearance
of a lot of articles, see [11] and references therein. Parasuperpotentials admitting Lie and
non-Lie [12] symmetries were investigated in [13], hidden SU(3) symmetry of equations
of PSSQM was established in [14].

The decisive step in the development of PSSQM was made by Beckers and Debergh
[15] who asked for Poincaré invariance of the theory and formulated the group-theoretical
foundations of so-called parasupersymmetric quantum field theory (PSSQFT), This theory is

1 This work was supported by the Ukrainian DKNT foundation for fundamental research.
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a natural generalization of SSQFT, dealing with parastatistics instead of the usval Fermi or
Bose statistics and with the Poincaré parasupergroup (or Poincaré parasuperalgebra (PPSA))
instead of the Poincaré supcrgroup (or Poincaré superalgebra (PSA)). On the other hand,
this theory is a relativistic extension of the PSSQM, preserving the main properties of the
non-relativistic parasupercharges.

Moreover, some dynamical models were proposed in [15], which were parasupersym-
metric analogues of the Wess—Zumino model [16].

We found it is necessary {o analyse irreducible representations (IRs) of the PPSA for the
following reasons:

(i) this is a way to establish the group-theoretical fundamentals of the PSSQFT;

(ii) it enables a new view to be generated—note the PSA which appears in our approach
as a particular realization of the PRSA;

(iii) it indicates the specific role of the groups SO(3), SO() and SO(2,3) in the
construction of internal super- and parasupersymmetries;

(iv) finally, the description of these IRs is an interesting mathematical problem admitting
an exact and elegant solution.

Using the Wigner induced representation method we find all the IRs of the PPSA, for
time-like, light-like and space-like four-momenta. We also find covariant representations of
the PPSA, which can have direct applications in PSSQFT.

2. The Poincaré parasuperalgebra

The Poincaré parasuperalgebra [15] includes ten generators P,, Jy, of the Poincaré group,
satisfying the usual commutation relations

[P,u.a Pl=0 [P}i! Jual=i(gpupa_8uwpu)
(v ool = i(gpoup + Bupdue — Brpdve — Evdjup) (2.1
J,uv—_‘"u,u M,U=0,1,2,3

and four parasupercharges Qa, Qa (4 = 1,2) which satisfy the following double
commutation relations

(04,108, @cll =[04, (08, Ccll =0
1Q4,1Q8, Qc)l = —405(0) ac P* (2.2)
(Q4,[Q8. Qcll =40c(0,)5a PP,

Here o, are the Pauli matrices, (-)4¢ are the corresponding matrix elements.
Furthermore, parasupercharges commute with generators of the Poincaré group as Weyl
Spinors:

1
[Juv, @4l = % ("#v)na Qs [Pu, Qa1 =0 (2.3)

- I - -
(Juu, Qal = BCH (G'J.w):B Qe [Py Cal=0
where 6yy = —0yy = G404
The PpsA is a direct (and natural) generalization of the pSA [2]. Indeed, the PSA also

includes 14 elements satisfying (2.1) and (2.3), but instead of (2.2) supercharges O 4, Qa4
satisfy the following anticommutation relations:

[Ca, 08l = Qa0s+ Q0a =0 [8a, 8als =0

5 (24)
[Qa: Opls =2(cu)anP”.
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We can ensure that (2.2) is a mere consequence of (2.4); however, the converse is not
true, Thus, the PSA is a particular case of the more general algebraic structure called PPSA;
in the same way that the usual Fermi statistics is a particular case of the parastatistics [8].
Moreover, by analogy with the PSA, P, and J,, are called even, but @4, Q4 are called
odd elements of the PPSA.

Some representations of the PPSA were described in [15]. Here we present the complete
description of all the IRs of the parasuperalgebra (2.1}H2.3).

3. Casimir operators and classification of the IRs

To find the main Casimir operators of the PPSA it is convenient to introduce the following
4-vector [5]

By=W,+ X, (3.1)
where W, is the Lubanski-Pauli vector
Wy = 3Euupad P P° (3.2)

and X, are the following bilinear combinations of parasupercharges
Xo = {01, 011+ [Q2, 021} Xy = ¢{{Q1, Q2] +[Q2, i)}
X2 = }{{Qz, Q11+ (02, O1]} X3 = 4{[01, 1] + [0z, O2]).

Using (2.1)<(2.3) we find the following commutation relations

[By, P,L]=0 [By, ool = 1(8uv By — 8po By) (3.4a)
[Bu, Qal=3P.0Q4 (B, @4l = —3P,0a,
{By, By] = igyyp, PP B°

from which it follows that the operators
Cy = P,P* Cy = P,P*B,B" — (B, P")* (3.5)

are the Casimir operators of the PPSA. Indeed, C; coincides with the usval Casimir operator
of the Poincaré algebra commuting with Q4, 04 in accordance with (2.3). The second
Casimir C; is essentially new and includes the Poincaré invariant operator W, W as a
constituent part. Thus, an IR of the PPSA is, in general, reducible with respect to the Lie
algebra of the Poincaré group.

We will search for representations of the algebra (2.1}-(2.3) in the momentum
representations, thus the action of the displacement operators P, will reduce to multiplication
by py, —00 < p, < oo, In this case, for any fixed p,, relations (2.2) and (3.4b) define
the algebra of operators B,, Q and Q4 which is going to be the main object of our
investigations.

As in the case of the ordinary Poincaré algebra [17,19] we distinguish the three main
classes of IRs corresponding the foliowing vatues of Cy:

(3.3)

(3.45)

4] P.PE=M*>0 (3.60)
an P,P* =0 (3.6b)
(0D P,P¥ = —q% <0, (3.6¢)

We will see that the IRs of the PPSA can be qualitatively distinguished for different values
of C; as enumerated in (3.6a—c). Moreover, these classes can be subdivided in accordance
with the different origins of eigenvalues of the second Casimir C; and of additional Casimir
operators existing in particular classes I-III of iRs.
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4. IRs of class I

If (3.6a) is valid then there exists the additional Casimir operator Cy = Py/|Py| the
eigenvaiues of which are £ = £1. We restrict ourselves to considering 1Rs corresponding
to £ = +1 (for the case ¢ = —1 refer to section 8). In this case we can define ‘a Wigner
little parasuperalgebra’ (LPSA) associated with the time-like 4-vector P = (M, 0,0,0). We
set

B=Wy+ X =-MS, + Xy =Mj k=1,2,3 {4.1)
and obtain from (3.45)

[Bo, Qal=1MQa  [Bo, 04l =-iMQ4 (4.2)

e @4 = Uik, @4l =0 (4.3)

ks Ji] = lekjii- 44)
On the other hand we obtain from (2.2)

(04,104, QsT1 =4MQz  [D4,(Q4, 0311 =4M 05 “.5)

the other double commutators of Q4 and 04 are equal to zero.

It follows from (4.5) that the relation (4.2) turns out to be an identity if (4.5) is satisfied.

In accordance with (4.3)~(4.5) the LPSA reduces to the direct sum of the Lie algebra the
basis elements of which are j, and the algebra of operators Qa, Q4 characterized by the
double commutation relations {(4.5). Thus, to describe the [Rs of this LPSA it is sufficient to
find all the 1Rs of the subaigebras (4.4) and (4.5). Indeed, let fa and I; be the basis elements
of an iR of the algebra (4.4) and the unit operator in the space of this IR and Q'A, QA and
Ig are basis elements of an IR of the algebra (4.5} and the unit operator in the space of this
IR. Then, setting

h=h®lg  Ca=L®g, 0:;=580, (4.6)
{where ® denotes the direct {(Kronecker) product) we come to the IR of the algebra (4.3)-
(4.5). Moreover, such a correspondence is a homomorphism.

Relations (4.4) define the Lie algebra AO(3) of the rotation group O(3). IRs of this

algebra are labelled by integers or half integers j so that

R+B+B=ijG+1 @.7)
The corresponding basis elements fa are the square matrices of dimension (274 1) x (2j41)
which can be chosen in the following form [18]:

(73)ab = 8ap(j + 1 — a) ab=12,...2j+1

- - (4.8)
(i Eip)w =8 Vi +D~G-a+DU-a+1x1).
To find IRs of the algebra (4.5) we choose the new basis
Q1 = V2M(Ss1 +i55) Q1 = v2M (S5 — iSs2) @9

Q2 =~2M(Ss3 +iSss) 02 = V2M (S5 —iSs4)
and use the following notations for commutators

[0:, O1] =4M5Sp; [0z, 02] = 4M S

[Q1. Q2] = 2M(iS24 — iS31 + Siz — S3)

[Q2, 01) = 2M(iS31 — Sx3 + S14 — iS24) (4.10)

[01, Q2] = —2M(iS3) + iS4 + S14 + S24)

(01, @2l = 2M (=183 — 1Sy + Si4 + Sz3).
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Formulae (4.9) and (4.10) are invertible, so that

i - 1 -
oy = e + Sen = —— -
51 ZJZ—H(QI Ol ) ZM(QI 1)
1 - i -
Sy = + Sse = — -
53 2\/2_A7(Q2 2) 54 ZJW(QI @2)

_ 1 -
S1g = ﬁ[Qh a1l S = m[Qz. 0]
1 . _ .
Sie = 572 ((Qr, Q2] +102, 011 +101, 8] ~ (@1, 0a)) (4.11)
1 - . - _
Sy = m([Ql, Q2] —1Q1, @) —1Q4, @21 - 122, 1]
Si3 = ‘“@([le 021+ 01, Q2 + Q1. @21 + (21, @2
S = “élﬁ([Qh Q21 =101, 021 — (01, @21 + [, O2]).

Using (4.5) and (4.11) we immediately find the following commutation relations for
Sy =3, £,1=1,2,...5

{Skh Smn] = i(5km5m + sfn Skm - 5anIm - 3!mSkn) (412)

which characterize the Lie algebra AG(5) of the rotation group in five-dimensional space.

IRs of the algebra AO(3) are labelled by pairs of numbers (»,, #2) both integer or half
integer, moreover ny = ny [18). The corresponding basis elements are square matrices of
dimension N(n;, nq), where

N(ny,m) = gy — ng + 1)y + nz + 2(2ny + 3)2n + 1). 4.13)
For the explicit form of these matrices see the appendix.

Thus we have proved that for P,PY > 0 the LPSA reduces to the direct sum of the
algebras AO(3) and AQ(5)

LPSA=A03)D A0(5) (4.14)

It follows from the latter that IRs of the PPsa of class I with positive sign of energy are
labelled by the sets of numbers (M, j, ny, #2). To find the explicit form of the corresponding
basis elements of the PPSA we start with the exact form of the Lubanski-Pauli vector W) in
the frame of reference where £ = (M, 0, 0, 0), which, in accordance with (3.2), (4.1) and
{4.10), can be given by the following relations:

Wy=0 W, =—M({,+ teucSoc + §54) = —MS,. (4.15)
Here
Ja = Ju ® Lytmrna) Su =Ly ® Sy (4.16)

fa and 3‘“ are basis elements of the IRs D(j) and D{ny, nz) of the algebras AQ(3)
and AO(3), correspendingly, Iy .n,) and Iz,4) are the unit matrices of dimensions
N(ny,m) X N(ry,npyand 27+ 1) x (274 1).

The corresponding parasupercharges are present in (4.9). With the help of Lorentz
transformation we find the explicit form of the Lubanski-Pauli vector and parasupercharges
in an arbitrary frame of reference:

PuSpDp

Wy=p,8 W, =eMS,+ —-— 4.1
0= Puvg £ u+(E-I—M) 4.17)



1660 A G Nikitin and V V Tretynyk

1
Q) = —Jﬁ[(SSI +iSs2)(E + M + ep3) + £(Ss3 + iSsa)(ps — ip2)}

1
02 = =S5 +1S52)(p1 +102) + (S5 + 850 (E + M ~ep3) (4.18)
04 =0}
where

E=yMI+p?  pP=pl4plypl
The explicit form of the generators of the Poincaré group, corresponding to the
Lubanski-Pauli vector (4.17}, is well known (see, e.g., [19]}, and can be represented by the
formulae
Py=¢k Pe = pu
Jap = XaPb — XpPu Tt Eabc Se

i 8 Eabe PoSe
Joa = Xopa — = | ——) E| = pZetePolc
0a = X0 Pa 5 [apa ]+ & ExM

Thus, we have enumerated all the non-equivalent IRs of the PPSA of class I and have
found the explicit form of the corresponding basis elements, see (4.15), (4.18) and (4.19).

(4.19)

S Irs of class 11

In this case we again have the additional Casimir C; = P/} Pg| = ¢ = 1. As before we
consider the case ¢ = +1, refer to section 8 for the other case.

To obtain the corresponding LPSA we choose the light-like 4-vector P = (M, 0,0, M).
The corresponding algebra (2.2) reduces to the form

(G2, (@2, @211 = 8M Q2 (02, (02, O2l] = 8M 0> (5.1)
{02,102 01]] = 8M 0, (02,02, 0171 = 8M O, (5.2)

the remaining double commutators equal to zero.
Let us start with (5.1). Dcnotmg

) ; .1 =
o= 4\/—-(Qz+ 0n) ZT—(QZ -0 Ja= BM[QZ' a1 (5.3)

we find that j, have to satisfy the relations (4.4), characterizing the algebra AQ(3). The
relations (5.3) are invertible, thus the algebra (5.1) reduces to the atgebra AO(3). Then the
relations (5.2) (completed by the zero double commutators) have only trivial solutions for
0, and Q). So we come to the following general form of parasupercharges:

Q2 = 2V M{jy — ij2) Qo =2/ M(jy +ij2) C0i=01=0 (54)

where j, are basis elements of the algebra AG(3).
In accordance with (3.45), (5.4) and (4.4) we obtain

[(Bo, Qi) =3M2:  [Be, 0] =—-1MQ, By = 55)
(Bo, Bil=iMB,  [Bo,Bil=—iMB  [Bo.Bil=0.
Defining

By = Wy + Xo = Wo+ Mjs = M(Tp - 1(j — j»))

_ 5.6)
Wo = M(Tg — 5(j + ja)) B=Wi=T By=Wy=Ty



Irreducible representations of the Poincaré parasuperalgebra 1661

we obtain from (5.5)
[Ty, 1] = iT, [To, T2] = —iTq [T, 2] =0 (5.7
[T01 Ja] = [Tl . J&] = [Tza jﬂ] = 0. (5'8)

We see that LPsa reduces to the direct sum of the algebras AO(3) and AE(2),
characterized by relations (4.4) and (5.7) correspondingly. In other words

LPSA=AE(2) ® AOQ3). (59)

The IRs of the algebra AE(2) are of two kinds corresponding to zero and non-zero
eigenvalues of the Casimir C = T2 + 77, If C = T2 + T} = 0 then

h=%Hh=0TL=A (5.10)
where A is an arbitrary (fixed) integer or half integer. If

C=T12+T:,.2=r2>0
the corresponding 1Rs are realized by infinite-dimensional matrices. Let |r,n} be the
eigenvector of the commuting operators C and Tp, then

Clrn)y=r?|rn) ylra)y=n|rn} (5.11)

(T =in) irnn =r|nrxl). (5.12)

Thus IRs of the algebra (4.4}, (5.7} and (5.8) are labelled by pairs of numbers (j, r) (or
(j, A) if » = 0). Denoting the common eigenvector of the commuting matrices j2, j5, C, Ty
by |j, v; r,n) and using (4.8), (5.11) and (5.12) we can represent basis elements of IRs of
this algebra in the form

Bl jvray=v|jvirn v=j,j—-1,...—j
Ui ljvirny=viG+D—vvE)|jvElirn
Toljvinny=nl|jvrn (5.13)
(i jivirny=rijyenxzl)

n=0,%£1,£2,...00 n=4d k3 23 ..., r#£0

n=A, r=0.

Thus, we have found the explicit form of the IRs of the operators W,, Qu, QA mn
the reference frame 2 = (f,0,0,M). To find these operators (and the comesponding
generators P,, J,,)} In an arbitrary frame of reference it is sufficient to make the
corresponding rotation transformation. As a result we obtain

V2(=pi+ipy L. z V2(-p1 —i L
o= —M(h —ij2) Q= —I—PQ(Ji +ij2)

VPt P+ P (5.14)

Q1= V2p + p3) (1 = if2) 02 = V2p+ p3)Gi +if)
Po=¢gp Py = pu
ﬁ) P+ 8ap

P+ P (5.15)

_ 1 Eabe To P Eabcpbnc(sf‘ﬁpz —Tupa)
J[}a =XoPu — EE[Pg -xa]-!» + Pl - pg(p + P3)

Jup = Xo Py — XpPo + Eabe

where

p=Jpi+p4+pl  m=001) T=0 Th=T-i(h+)
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For the case which is important for physics C = r? = 0 (representations with discrete
spin) formulae (5.15) are simplified and reduced to the form
Po=gp Fe = pa

. L Pctd
Jab = XaPp = XoPa + 5Eapc(Zh — j — Js)ﬁcﬁ (5.16)

L 1 N L
Joa = X002, — ié‘[p, Xaly — ';'r_'g‘?abc(z;{- —-J- fS)p - ;3

where A and j are arbitrary integers or half integers.

So IRs of the PPsA, belonging to class II with Py > 0, are labelled by the sets of numbers
{r. /), r #0or (A, j) for r = 0. The explicit form of the corresponding basis elements is
given in (5.14)~(5.16) and (5.13).

6. IRs of class I

To obtain the comesponding LPSA we choose the space-like 4-vector P = (0,0,0, ). The
corresponding double commutation relations (2.2) reduce to the form

(101,101, @)l = —4n05 [01.121, 05]) = ~4705
[Q2,[02. 08l) = 4nQ0p [02.[Q2, 08)] = 4005

the remaining double commutators are equal to zero. Moreover, denoting

6.1)

Bp = —Jyzn + Xo = iz B =—Jpn+ X, =1y By = Joyn + X2 =nJp

(6.2)

and remembering that B3 = X3, we find from (3.48), that
[Jogs Qal = [Jag, @41 =0 . =0,1,2 (6.3)
[Japs Joo] = 1(8ac Tgp + 8poJac — BapTps — 8pe Jup) (6.4)

where

go=—8n=—gn=1 gap=0 o # B

In accordance with (6.1)-(6.4) the LPSA corresponding to space-like momenta reduces to
the direct sum of the algebra AO(1, 2) (defined by relations (6.4)) and the algebra, defined
by the double commutation relations (6.1). The latter reduces to the algebra A0(2, 3), if
we define Q,, O, and the corresponding commutators using the relations (4.9) and (4.10)
(with M — 5, compare (3.6a) and (3.6¢)). Indeed, in this case we immediately find that
S have to satisfy the algebra A0(2, 3). The corresponding commutation relations can be
obtained from (4.12) by the change éy — —gu, where

g =gn=—g3n=—gu=—gs55=1 gu=7~0 k#1 (6.5)

Thus we make sure that the LPSA for representations of class II reduces to the direct
sum of the algebras AO(1,2) and AC(2,3) :

LPSA=A0(1,2Y@ A02,3) (6.6

The IRs of the algebra (6.6) can be constructed by analogy with (4.16). For IRs of the
algebras AQ(1, 2) and AQ(2, 3) see, e.g., [20].
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Starting with (6.2), (4.9) and (3.1) and making the Lorentz transformation corresponding
to a transition to an arbitrary frame of reference, we find the corresponding basis elements
of the PPSA in the form

Py=py Jobh = XaPp — Xppa + gﬂb
Jouw = Xopu — %[xuw Pol+ + '§0a

$ _Sa 0
T = Xap3 — X3p, — —2Eb — 2a0f0

P+

SouPu
Jos = xop3 — 3lx3, pols — p:afn
01 = (7 + P2 — po)(Ss1 +iSs2) — (p1 — ip2)(Ss3 +iSse)] ©T)

NCEND)
i
= —_— i S i5 S, 15,

02 m[(m + ip2)(Ss1 + iSs2) + (7 + p3 + po)(Ss3 + 1554)]
0 (n+ p3 — po)(Ss1 — iSs2) — (py +ip2)(Ss3 — iS54)]

- n+ p3)

= 1
O = ————==[(p1 — ip2)(S51 —1352) + (7 + p3 + po)(Ss3 — 1554)]
S+ pa)
where
1_.2_ .2 S _ 7 1

Po=P —1 S12 = Jiz + 5812 + Sa3)

Sor = Jor + 3(S13 + Ss2) Soz = Joo + $(Ss2 + Sa1)
ja’g are basis elements of the algebra AQ(1, 2} (6.4), Sy are basis elements of the algebra
AQ(2,3) with the metric tensor {6.5), besides [faﬁ, Sul=0.

7. Covariant representations

Here we present a special realization of representations of the PPSA when the Poincaré group
generators have the form

Pu=py Juv = Xppy — X pu + Sy (7.1)

with S, being numerical matrices. Such a realization (when the ‘spin part’ S, of generators
commutes with ‘orbital part’ x,p, — x; ) can be more revealing in physics than the
realizations considered so far.

We choose S, in the form

Sup = SapeSe Sgu = —15, (72)
where §; are the matrices defined in (4.15). Then the corresponding parasupercharges are

Q1 = ~2M(—S51 + i55) Q3 = vV2M (853 —i854)

= 2
g, = \/%[(Ps — po)(Ss1 +1iSs2) + (p1 + 1p2)(S53 + 1554} (7.3)

- 2 . .
0, = ‘/;[(po + p3)(S53 +18s4) + (o1 — ip2)(Ss1 + 1852))-

To obtain the realizations (7.1)-(7.3) it is sufficient to use the transformation (7.4) and
(7.5) given in the following. Moreover, it is easy to verify that the operators (7.1)-{7.3)
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satisfy the relations (2.1)-(2.3}, i.e. realize a representation of this aigebra. Besides, if we
assume P, P = M* > 0, py = (p* + M*'/2, and the matrices Suy, j. of (4.15), (7.2)
and (7.3) have the form (4.16), then this representation is irreducible and belongs to class I,
Indeed, the corresponding operators (7.1)~(7.3) reduce to the form (4.18) and (4.19) using
the transformation

Jyo = UdU™! P, UBRU™ o~
Qs = UQaU™! 04— UQU! '
where
iS5
U = exp (—'—"ifﬂanh%). 15)

8. Discussion

Considering IRs of the PPSA we restricted ourselves to the case of positive values of the
Casimir operator Cz = Py/|Py|. The case of negative energies can be analysed in complete
analogy with the above but corresponds to another LPSA in comparison with (4.14) and
{5.9). Moreover, in this case we have LPSA = AO(3) @ AO0(1, 4) for ®s of class I
and LPSA = AE(Q2) & AO(1,2) for IRs of class II. The corresponding parsupercharges
can be obtained from (4.18) and (5.14) by the changes S5y — iS50, fo = iju, a =
1,2,3,4, o = 1,2, where §,, and j, are now basis elements of the algebras AO(1,4)
and AQ(1, 2) correspondingly. They satisfy the relations (4.12} with 8,5 — —gup, Where
g1 =gn =gn=gu=—g:s=—1and g;; = gn = —gy = —1.

Thus, we have described all possible {up to equivalence) IRs of the PPSA. Here we
discuss possible physical interpretations of them.

We start with IRs of class 1. First, let us discuss the spin contents of these representations.
To do this we reduce them to representations of the Poincaré algebra AP({1, 3) (which is a
subalgebra of the PPSA).

Let us restrict ourselves to the case j = 0 (refer to (4.15) and (4.7)). Calculating the
corresponding Casimir operator C = W, W" for the subalgebra AP(1, 3) we obtain from
(4.17) and (4.15)

W, W = M>5? S =(S, 5, S3) (8.1)
where

Sy = %(%sachbc + Sda) (8.2)
and Sgp, 81, belong to the IR D(n, ny) of the algebra AQ(5).

The matrices (8.2} realize a reducible representation of the algebra AO(3). Indeed,
reducing the IR D(ny, ny) to the representations of the algebra AOG(4) 3 Sy, Swla, b =
1, 2, 3), and continuing this reduction to A0(3) D S, of (8.2), we obtainy the following set
of eigenvaives for (8.1)

~1 —2
W, WH = —M2s(s + 1) s=”‘;’"2 "‘+gz "‘+;2 ..., 0. (8.3)

Morecver, the multiplicity M, of any value of s (ie., the degeneration of the
corresponding eigenvalue M”s(s + 1) of W, W") is given by the following formulae

M = (ng — g+ Dny +ny+ [ —25) s>i—l—§—:—2,
(2nz + D(2s + 1) § <« =12

1+ For the details connected with 1Rs of the algebras AG(S) D AC(4) D AQ(3) see, e.g,, [18].

(8.4)
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For the case j £ 0 (see (4.7) and (4.15)) the possible spin values can be found as a
result of summation of the two momenta, i.e., § and S of (8.2). As a result we have instead
of (8.3)

n+n ] n+n . 0, m;'
s=2 "y Rl So={ L mtn ! @85

The corresponding multiplicities can be calculated using the Clebsh—Gordon theorem and
bearing in mind (8.4).

In accordance with the above IRs of the PPSA can be set into comrespondence with
parasupermultiplets of particles with spin described by formulae (8.4) and (8.5).

Like supermultiplets [2], parasupermultiplets includes both bosons and fermions.

Let us consider some examples of IRs. For ny = nz = 1/2 we come to IRs of the
Poincaré superalgebra. Indeed, in this case the corresponding operators Q4 and @, of
(4.18) satisfy the anticommutation relations (2.4), defining supercharges. Moreover, the
related formulae {8.3)-(8.5) reduce to the well known relations (see, e.g., [2])

s=j+3.7i—3% M; =2 My =1 (8.6)
(the expressions for M, follow from (8.4) and the Clebsh—Gordan theorem), giving the spin
contents of supermultiplets,

Thus, we have obtained IRs of PSA as a particular (and the simplest) case of our more
general problem.

Forny = ny = pf2, p = 1,2,... formulae (7.1)~(7.3) present the realization of
generators of the Poincaré parasupergroup, which is equivalent to that found in [15]. The
distinguishing feature of our approach is that we use the explicit matrix constructions (more
precisely, 1Rs of the algebra AQ{5)) instead of the paraGrassmanian variables and their
derivatives applied in [15]. The last, of course, admit matrix realizations and vice versa,
our results can be reformulated using the concept of parasuperfield [15].

Consider IRs of class I with discrete spins. The comresponding basis elements are
presented in (5.14) and (5.16).

The considered representations are reducible with respect to the subalgebra AP(1, 3).
Indeed, calculating the additional Casimir operator of the AP(1,3):

_JapytIapr+ dap

c =A—3j-1h
7 2 2
we find that its eigenvalues A (associated with helicities of particles) are
A=AA—L -1 k- 8.7

Thus, the corresponding parasupermultiplet includes 2j + 1 particles, both bosons and

fermions, the helicities of which are given in (8.7).
For j = 1/2 we again come to the IRs of PSA which is a particular case of a more

general object, i.e., the Poincaré parasuperalgebra.

Using the transformations found in [21] it is possible to find realizations of IRs of the
PpSA which are uniform for any class I-IIT of (3.6a). Such realizations are unitary equivalent
to those already considered.
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Appendix

The orthogonal group O(5) is the set of all linear transformations of the five-dimensional
Euclidean space preserving the quadratic form x? +x% + ...+ x2. The Lie algebra of this
group is characterized by relations (4.12). Imreducible representation of the algebra AQ(3)
are labelled by pairs of numbers n; and ny (simultaneously integer or half integer).

Each representation of the algebra AO(S) generates a representation of the algebra
AO0(4). In the Gel'fand-Zetlin basis [18] all the Casimir operators of the subalgebras
AO(4) D AO(3) D AO(2) are diagonal and are characterized by the eigenvalues my, mo,
where ny 2 my 2 fq 2 ma 2 —mgl, where iy 2 1 2 jmal,m, where § 2 m =2 —i,
correspondingly.

Numerating basis elements by multi-index

m) ma
& l
m

we can represent the action of generators in the form (m, and m» are fixed)

ny no ny mp
S21€ ! =mé !
m nt
n, msa i m) mp i
S326 ! =—§J(l—m)(l+m+1)5 { +§\/(l—m+1)(l+m)
" m1
ny na
xE !
m—1
Sust A U mA 1) —mt D my =D myH A+ 2) = ma+ 1D+ ma+ 1)
“ - @I+ 1)(21+3) I+ 1)2

”;'_%_ml" lm(m; =+ l)mge m'!mz
a+ 1l

m

\F U+ m)( — m)omy — 1+ Dy + 1+ DU = m)(l + m)

Cl4 D —-nie
| My
l—-l

_ fmy =14+ 1) (my +1H2) (ny —my )y +my +3)(my — a4+ L +n34-2)
B (my+ma+1)(m+mz+2)(my —mz+ 1) (my—ma+2)

m) + 1 ma
xE !
m
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{—mp)(ma+I+ Dz —ma)ny+ma+ 1)y —ma+ D(ng+ma+2)
_l_
(m1+m2)(my+ma+ Dmy —mad(my —ma+1)

51 Wip + 1
x& {
m
+i (my 14D (my =Dy —my + Dy +my +2)my —n2)(my +na+1)
2 (my 4 ma)(my+mz+1)(my —m2)(my —ma+1)
my = 1 Mz
xE !
mn
+i (I —ma+ 1) (ma+ 1y —ma+ 1) (na+ma}(n —ma+2)(ma+n +1)
2 (my+mpmy+ma+ 1)my —ma+2)(my —my+1)
m; ms — 1
x& !
m

Other generators can be obtain from {4.12}.
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